2-2-2009

Warming Climate Changes Vermont Disease

Elizabeth Baker
Matthew Meyer
Asya Mu’Min
Lindsey Oliver
Daniel Oppenheimer

See next page for additional authors

Follow this and additional works at: http://scholarworks.uvm.edu/comphp_gallery

Part of the Community Health and Preventive Medicine Commons, and the Health Services Research Commons

Recommended Citation

Baker, Elizabeth; Meyer, Matthew; Mu’Min, Asya; Oliver, Lindsey; Oppenheimer, Daniel; Perrins, Steven; Young, Whitney; Hoffman-Contois, Razelle; Bress, William; and Carney, Jan, "Warming Climate Changes Vermont Disease" (2009). Public Health Projects, 2008-present. Book 7.
http://scholarworks.uvm.edu/comphp_gallery/7

This Article is brought to you for free and open access by the Public Health Projects, University of Vermont College of Medicine at ScholarWorks @ UVM. It has been accepted for inclusion in Public Health Projects, 2008-present by an authorized administrator of ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.
Warming Climate Changes Vermont Disease

Baker, Elizabeth¹; Meyer, Matthew¹; Mu'Min, Asya¹; Oliver, Lindsay¹; Oppenheimer, Daniel¹; Perrins, Steven¹; Young, Whitney¹

Hoffman-Contois, Razelle² MS; Bress, William³ PhD.; Carney, Jan¹, M.D. MPH

University of Vermont College of Medicine¹; Vermont Department of Health²

Introduction

• The average annual temperature in Vermont has gradually increased roughly 1° Centigrade with an increase of 1.16 inches of annual precipitation over the past 112 years. [i]
• According to expert analysis, humans are responsible for 60% of the warming over the past 140 years. [ii]
• Projected greater than 1° Centigrade increase in global temperature by 2100 and a correlated rise in precipitation. [v]
• Climate changes result in the introduction and reproduction of non-endemic flora and fauna.
• Vector-borne diseases accompany warming trends and can become endemic and cause new illnesses in areas which were previously uninhabitable. [ii]

Methods

• Research of global climate change, temperature, weather patterns seen in Vermont and vector-borne diseases as potential threats to Vermont was completed.
• Current temperature projections were used to approximate Vermont’s future climate.
• An analysis of vector-borne disease in states with climates similar to that projected for Vermont was conducted.
• Lyme disease was investigated in depth as an example of how climate change has lead to the invasion of new vectors and their diseases.
• The precedent set by the migration of Lyme disease into Vermont was used as a model to create a list of other vector-borne diseases that could be seen in Vermont in the near future.
• Information was condensed to be distributed to local physicians and general public to raise awareness.

Results

• The impact of climate change on Vermont’s future climate.
• Research of global climate change, temperature, weather patterns seen in Vermont and vector-borne diseases as potential threats to Vermont.
• Current temperature projections were used to approximate Vermont’s future climate.
• An analysis of vector-borne disease in states with climates similar to that projected for Vermont was conducted.
• Lyme disease was investigated in depth as an example of how climate change has lead to the invasion of new vectors and their diseases.
• The precedent set by the migration of Lyme disease into Vermont was used as a model to create a list of other vector-borne diseases that could be seen in Vermont in the near future.
• Information was condensed to be distributed to local physicians and general public to raise awareness.

Evidence

• The impact of climate change on Vermont’s future climate.
• Research of global climate change, temperature, weather patterns seen in Vermont and vector-borne diseases as potential threats to Vermont.
• Current temperature projections were used to approximate Vermont’s future climate.
• An analysis of vector-borne disease in states with climates similar to that projected for Vermont was conducted.
• Lyme disease was investigated in depth as an example of how climate change has lead to the invasion of new vectors and their diseases.
• The precedent set by the migration of Lyme disease into Vermont was used as a model to create a list of other vector-borne diseases that could be seen in Vermont in the near future.
• Information was condensed to be distributed to local physicians and general public to raise awareness.

Prevention

• Please use caution and follow all product directions when applying natural and chemical repellents.
• Be informed about symptoms and when to call the doctor.
• Effectiveness may vary with product use.

Conclusions

• The temperature and amount of annual precipitation has been increasing in Vermont.
• Expected warming trend to continue in the near future.
• Patterns of climate change have led to the invasion of new insect species and the diseases they carry.
• Lyme disease did not exist in Vermont 20 years ago, but is now prevalent in the state.
• Incidence of Lyme is predicted to increase as winters become milder and summers become longer.
• West Nile Virus is expected to expand its natural habitat into Vermont with warmer temperatures.
• Other diseases with similar temperature-based migration patterns to Lyme are Hantavirus, Eastern Equine Encephalitis and other mosquito-borne encephalitides, Rocky Mountain Spotted Fever, and possibly even malaria.

References

[i] Contributors of the National Climatic Data Center, Climate Monitoring/Vermont, NOAA Satellite and Information Service, National Environmental Satellite Data and Information Service. Silver Spring, MD, USA.